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Abstract

Protocol and operating system overheads have become the limiting factor for communications
performance on fast networks such as ATM. A large component of these overheads stems from the
protocol redundancy that arises when layering higher level protocols on top of lower level ones. ATM,
for example, requires specific mechanisms for connection management, flow control, congestion
avoidance, and segmer.ation and reassembly. With these mechanisms in place, it is relatively simple
and inexpensive to provide for reliable sequenced delivery at the network interface level. making
similar functionality in higher-level protocols such as TCP/IP redundant. In this paper we present a
protocol architecture specifically tailored for communication over high-bandwidth low-latency local
or metropolitan ATM networks. Our architecture yields high performance by eliminating protocol
redundancy and by exploiting common-case communication behavior. With this approach, we
can combine the functionality typically found in four separate layers of the ISO model — data
link through session — in a single pass over the data, delivering high throughput and low latency.
Our protocol architecture requires minimal hardware support from the network interface and switch
fabric, yet efficiently provides services such as segmentation and reassembly, flow control, congestion
avoidance, and error recovery. We have implemented our protocol architecture on a switch-based
ATM network consisting of DECstation 5000/200 workstations running the Mach 3.0 operating
system. Our implementation achieves latencies and bandwidths close to the physical limitations
imposed by the hardware, yet offers applications a high-level reliable trausport interface.
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1. Introduction

Networks such as ATM [22] and HiPPI [13] are becoming increasingly important due to their high
bandwidths and low latency. High bandwidth is important for applications such as those found in
supercomputing, visualization and multimedia. Low latency is key to efficient remote procedure
call support and fine-grain distributed computation. Bandwidth and latency gains in the physical
medium, however, do not necessarily result in correspondingly better communication performance
for end applications [27]. The work described in this paper is targeted at providing to applications
network latencies and bandwidths close to inherent hardware limits for an ATM network. To do
this, we bypass higher-level protocols because the functionality found in those protocols, such as
TCP/IP [24], is made redundant by services required in the lower-level network interface. ATM. for
example, requires specific support tor connection management, flow control, congestion avoidance.
and segmentation and reassembly, making similar TCP/IP functionality redundant.

Our protocols and interfaces are designed from scratch to avoid biases detrimental to ATM that
favor obsolete or extraneous architectures or protocols. This approach is not new: most of the
work on fast RPC, for example, is layered on top of assumptions about the architecture or network
used {15, 32]. Our design requires only minimal architectural support from the host interface and
switches, favoring solutions that work on hardware inexpensive enough to come pre-configured on
every workstation, much as Ethernet [21] currently does. Specifically, in our implementation:

e we optimize our protocols for the common case {18] of low-latency, high-bandwidth com-
munication over an ATM network scaling up to metropolitan distances — roughly 40 km.
Assuming that the communicating hosts are connected directly through ATM rather than an
internetwork reduces the complexity of the network protocol software. Metropolitan ranges
impose only moderate propagation delays, making it possible to use simple protocols for flow
control, congestion avoidance and error recovery. Internetworking and routing are left to
higher-level software that is invoked on an exception basis.

o we ezploit integrated layer processing (7] because each separate protocol layer can take time
comparable to that required to transport the data over a high-speed network. For the host
to keep up with the network, layers must be combined or eliminated. Qur network interface
is organized in a single layer, and requires that each data byte be accessed only once on the
path between application and the physical medium.

e we integrate buffer management for applications and protocol processing. Using the same
buffers for both, each data byte needs to be moved only once between the network and the
application’s address space, minimizing data copying.

Although our discussion focuses on ATM networks, many of the techniques we present are also
applicable to other high-speed networks, including those found in tightly coupled multicomputers.
For example, our buffer management and segmentation and reassembly approaches could be ap-
plied to the fat-trees used in the CM-5, and our flow control and congestion avoidance algorithms
could be used in the Paragon mesh, where receiver overrun is becoming an increasingly important
problem [5].




The rest of this paper

The rest of this paper is organized as follows. In Section 2 we provide some background on ATM
networking and protocols, and describe the hardware we used in our work. In Section 3 we discuss
the difficulties associated with the traditional layering of higher-level protocols on top of ATM. In
Section 4, we describe the overall organization and implementation of our protocol architecture,
in particular our approach to buffer management, segmentation and reassembly, flow control and
error recovery, signaling, multiplexing, and the integration with Internet protocols. In Section 3
we discuss performance. In Section 6 we survey related work. Finally, in Section 7 we present our
conclusions.

2. Background

ATM is the international standard chosen for BISDN, the proposed global fiber-optic network that
integrates and replaces the current separate networks for data, voice and video communication [22].
ATM packets {cells) have a fixed length of 53 bytes. Of these, 5 bytes are the ATM header with
the virtual path identifier and virtual connection identifier (VPI/VCI) used to route the cell to the
destination. The other 48 bytes of the cell are the payload, which carries user data.

Messages are broken up into cells according to one of several ATM adaptation layer options
(AAL). Our hardware supports AAL 3/4. In this option, the ATM payload (segment) is divided
into a 2 byte segmentation and reassembly (SAR) header, 44 bytes of data, and a 2 byte SAR
trailer. The SAR header contains two bits to indicate segment type (beginning, continuation.
end of message, or single segment message), a modulo-16 segment sequence number, and a 10 bit
message identifier (MID). The SAR trailer contains the segment checksum and length of the data
in the segment. A convergence sublayer (CS) runs on top of SAR and inserts and removes a four
byte header and a four byte trailer in messages. The CS header contains the message type. the
lower 8 tits of the MID, and the size of the buffer required for the message. The CS trailer carries
a byte for protocol use, the lower 8 bits of the MID, and the total message length.

To transmit a message, the CS header and trailer are inserted, and the resulting message is
broken up into segments each 44 bytes long, except possibly for the last one, which may need to be
padded with zeros to complete a segment. Segments are sent in individual cells to the destination.
where they are reassembled into the original message.

Every host in an ATM network is connected to one or more switches that route packets between
hosts and other switches. In contrast to networks such as Ethernet, a connection must be estab-
lished between any pair of hosts through intermediate switches before they can commmunicate. A
connection is established or torn down using specific signaling protocols running on top of ('S, and
is identified by the VPI/VCI fields of the ATM header. Cells from a given connection are routed
over a path determined at connection establishment time, and cannot be misordered or duplicated
by the network. A connectionless service has also been proposed for ATM, but its specifications
and exact characteristics are still in progress. As with other fiber-optic networks, bit error rates are
extremely low (on the order of 107!4). Cells may, however, be lost due to corruption, congestion,
and buffer depletion at intermediate switches and endpoint nodes. Neither the ATM hardware nor
the adaptation layers provide for automatic acknowledgements and retransmission.




2.1. Experimental hardware

Our protocol architecture iz designed to function well using simple network interfaces and switches.
Such configurations are likely to become ubiquitous because of the low-cost promised by their sim-
plicity. The system described in this paper uses a Fore Systems’ ASX-111 ATM switch {10}, and
140 Mbps TCA-100 TURBOchannel ATM computer interfaces [11]. The interfaces! iink DECsta-
tion 5000/200 workstations [8] that use a 25 MHz MIPS R3000 CPU {16] running over a 25 MHz
TURBOchannel I/O bus [9].

The Fore Systems’ interface does not have its own CPU, and does not support DMA. The
interface performs only cell delineation, FIFO buffering, checksumming, and interrupt management.
We believe that this is the minimum support required from any ATM host interface. Even at 140
Mbps, it is not feasible to interrupt the host CPU with each cell’s arrival as the time between cells
is only about 3 microseconds.

The host CPU is presented with a FIFO interface through which it sends or receives ATM cells
using programmed I/O. This requires that each word in the cell be individually written or read by
the host CPUl. There is not a clear case for or against DMA-support in low-latency networks. The
use of programmed I/O can reduce latency since no DMA set-up is required, and can eliminate
. cache consistency problems since all messages go through the CPU. However, programmed 1/0 also
limits the available bandwidth across the I/O bus. With DMA the TURBOchannel can transfer
one 32-bit word per cycle, giving a peak rate of 800 Mbps. In contrast, programmed I/O requires
8 cycles to read a word?. This yields a raw input bandwidth of 80 Mbps for the CPU to transfer
data from the receive FIFO to memory, which is only about half of the network transmission rate.
On the transmit path, the CPU needs 3 cycles to write words across the [/O bus. giving a peak of
160 Mbps for the host to read from memory and write to the transmit FIFO — enough to saturate
the link. As a result, the receive path will tend to overrun when driven by a similarly equipped
host, so flow control between the sender and receiver is needed to avoid loss of cells. The receive
FIFO has capacity for 292 cells, while the transmit FIFO can hold up to 36 cells.

Each interface is connected to a switch, which has capacity for up to 16 input ports and 16
output ports (switches with 64 ports are rapidly becoming available). Each output port has a
FIFO with capacity for 256 cells, and shares with three other output ports two additional FIFOs
with each a capacity of 512 cells. A given output port has, on average, sufficient buffering for 512
cells, but is capable of holding up to 1280 cells during peak traffic periods. Switch delay is less
than 10 microseconds if the output FIFO is empty.

3. The problem with layered protocols over ATM

A simple way to incorporate a new network technology such as ATM into an existing operating
system is to layer it beneath an existing protocol stack such as TCP/IP or UDP/IP. In this way.
ATM provides the physical transport only, analogous to an Ethernet, a token ring, or even a serial
line. A layered implementation would have the ATM layer move cells through to the hardware

'The Fore interface delivers slightly less bandwidth than the 155 Mbps capacity of the network.

2The number of cycles required depends on the particular TURBOchannel implementation; the minimum is 4
cycles {9].




FIFOs. The next layer would perform SAR, possibly using linked buffers since the SAR layer
does not know the total message length and cannot allocate a contiguous buffer of the total size
necessary on reception. A CS layer on top of SAR would insert or remove the CS header and
trailer, in the latter case verifying that the reassembled length equals that in the CS trailer. IP,
which provides routing, fragmentation and reassembly, would be layered on top of CS. UDP, which
provides connectionless service and demultiplexing of packets to user endpoints, and TCP, which
provides connection-oriented, reliable stream communication with automatic flow control and error
recovery, would in turn be layered on top of IP. Finally, sockets, which provide application-level
endpoints and an additional buffering layer [19], would be placed on top of UDP and TCP.

Several existing implementations follow this approach {29, 3]. While a layered implementation
reuses existing protocol software, it also introduces redundancies that affect end-to-end latencies
and bandwidth [33, 17].

o Special connection management and routing mechanisms are required because ATM uses its
own signaling protocols to establish and tear down connections. These protocols are different
from the ones used by higher-level protocols such as TCP.

e The ATM SAR protocol makes IP fragmentation and reassembly redundant. Multiple seg-
mentation and reassembly layers increase latency because a message must be broken up and
reconstructed multiple times, and decrease usable bandwidth because SAR structural infor-
mation must be carried in the message. [P typically enforces a maximum packet length
(MTU) of 576 bytes®. Any packets larger than that are fragmented and reassembled, as in
ATM SAR. To prevent IP fragmentation, TCP typically uses a maximum segment size (MSS)
of 512 or 536 bytes (the slack is for the TCP/IP header). As IP headers alone are at least
20 bytes long, it is impractical for IP to use an MTU of 44 bytes (the maximum AAL 3/4
segment length). The TCP header adds another 20 bytes, so it is impossible for TCP to avoid
ATM SAR because even the TCP/IP header alone cannot be transmitted in a single AAL 3/4
cell (a single-segment AAL 3/4 message can hold only 36 bytes). The ATM interface would
thus need to inform IP of a larger, fake MTU, for example 576 bytes, and then do its own
SAR to break the large IP fragments into 44-byte segments. Consequently, the message may
be fragmented multiple times, once by IP (or preventively by TCP), and then again by the
ATM SAR. While an outboard processor can perform ATM SAR processing to reduce CPU
overhead, it does not eliminate the latency and bandwidth costs of redundant fragmentation.

e The small ATM packet size leads to poor network efficiency when used to carry [P traffic
because IP headers are relatively large compared to the size of application data. The distri-
bution of TCP packet size for application data is sharply bi-modal, with a major peak at 0
bytes and a secondary peak at the MSS [2]. The same measurements have shown that 77%
of all TCP packets carry between 0 and 36 bytes of application data; 6% between 37 and 80
bytes; 2% between 81 and 124 bytes, 10% carry 512 bytes, and 4% carry 536 bytes. That
data could be transmitted without TCP/IP headers in 1.2, 3, 12 or 13 AAL 3/4 segments,
respectively, requiring an average of 2.7 cells per message. The TCP/IP header adds at least
40 bytes to the application data and raises the average number of cells per packet to 3.7.
This decreases the transmission efficiency by 37%. Similar observations about UDF behavior
reveal that headers raise the average number of cells from 2.1 to 2.5. which is a 19% loss in
efficiency.

3Larger MTUs can be used in specific LANs




e TCP’s low control scheme reacts to congestion by reducing window sizes and by retransmit-
ting lost segments [24], but also relies on implicit lower-level limits that do not exist naturally
in ATM networks. For example, on Ethernet or FDDI [26], only one host or gateway can
transmit at a time, so any attached node can never receive data above the fixed network rate.
In an ATM network, though, switches can receive data at multiple input ports simuitaneously,
and at each port at full link bandwidth. If all data is destined to a single output port and
available buffering is finite, data loss will result. Moreover, TCP’s slow start mechanism [6]
causes data loss, even in the absence of cross traffic (traffic from other connections traveling
over the same path or subpath). Slow start increases the window size each time an ucknowl-
edgement is received. Eventually, the buffering capacity of the destination or intermediate
nodes is exceeded, causing packet loss, and reducing the window back to one segment. As a
result, window sizes oscillate between extremes [28].

Finally, in a layered implementation such as the one outlined above, a message’s data must be
manipulated and copied multiple times: first from the hardware FIFOs to cells in host memory, then
from cells into linked buffers (SAR), then into processor registers for checksumming { TCP or UDP).
and finally into user buffers (socket layer). The transmit path is symmetric. This behavior wastes
CPU cycles and interacts badly with the limited memory and I/O bus bandwidth commonly found
in workstations [23]. For example, memory-to-memory copy bandwidth on a DECstation 5000/200
is limited to about 160 Mbps, which is only slightly greater than the 155 Mbps ATM transmission
rate, and substantially less than the 622 Mbps transmission rate in future ATM networks. Any
protocol layer or sublayer that references the data in the packet will take time comparable to that
necessary to transfer the data over the physical network. With multiple protocol layers and passes
over the same data, protocol processing quickly becomes the bottleneck in the pipeline between
communicating applications on different hosts.

4. An integrated protocol architecture

To address the problems of redundant processing outlined in the previous section, we have designed
and implemented a protocol architecture specifically tailored to the requirements and capabilities
of ATM. As previously mentioned, we are focusing on the case of local and metropolitan area
networking, specifically over distances limited to about 40 km. Additionally, in the work presented
in this paper we are concerned exclusively with data communication, supporting only statistical
multiplexing of network bandwidth.

Our network architecture supports communication between endpoints, which are the entities
through which user tasks send or receive messages. An endpoint is analogous to a BSD Unix
socket [19]. The task that creates an endpoint is its owner, and is the only one allowed to send or
receive messages through it.

Endpoints have associated buffer areas that are co-mapped into the address spaces of the kernel
and the endpoint owner task. Buffers for received messages are allocated from the buffer area of
the receiving endpoint. An endpoint’s protocol and buffer area size are defined when it is created
by a task. The protocol determines the transport discipline applied to messages sent or received
through the endpoint, and can be one of datagrams, sequenced packets and raw datagrams.

o Datagrams are sent over a multiploxed connection between- the communicating hosts, and
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are automatically flow controlled. A datagram endpoint can simultaneously receive messages
from multiple hosts.

o Sequenced packets are transported over an exclusive connection between the respective end-
points, and are automatically numbered, acknowledged, and retransmitted in case of error or
time-out.

¢ Raw datagrams are provided for internetworking and wide-area accesses. Raw datagrams un-
dergo only ATM, SAR and CS layer processing. They are neither reliable nor flow-controlled.
These functions are left to higher-level software. Like datagrams, raw datagrams are sent
over multiplexed coanections.

Datagrams and sequenced packets can be up to 64 KB long, and are intended for the common
case of hosts connected by ATM in the same local or metropolitan area network. We limit the
size of raw datagrams to 9244 bytes because they are not flow-controlled (this limit was chosen for
compatibility with IEEE 802.6 and with the size of the receive FIFOs of the hardware we use).
The protocol of communicating endpoints must be compatible.

Our protocols are implemented within a kernel-level device driver that provides the ATM, SAR.
CS and signaling layers, as well as the flow control and error recovery required for datagrams
and sequenced packets. The driver is organized in a single layer and runs entirely in kernel mode
for protection. Other protocols, such as TCP/IP, or application programming interfaces, such as
sockets, can be layered on top of the native interface for compatibility. These higher layers can be
implemented inside the kernel or at user level [20].

In the rest of this section we discuss in more detail our approach to buffer management. seg-
mentation and reassembly, flow control, error control and recovery, signaling, multiplexing, and
integration with Internet protocols.

4.1. Buffer management

Protocol implementations often use their own buffers, distinct from the buffers used by the end
applications. In BSD Unix, for example, protocols use mbufs [19], while applications use buffers
allocated from the heap or stack. This imposes at least one extra data copy through mbufs on the
path between the application and the network.

We integrate buffer management for protocols and applications, and therefore eliminate this
copy. Endpoints have exclusive buffer areas that are statically mapped between the kernel-level
protocol driver and the endpoint’s associated address space. When a message arrives from the net-
work, the network interface allocates the buffer for it from the buffer area of the receiving endpoint.
Since this buffer area is already mapped to the endpoint’s owner address space. the application
can receive the message with no copies or virtual memory manipulations. When sending data, the
sender blocks until the message has been sent (and, in the case of sequenced packets, acknowl-
edged). This avoids having to copy an outgoing message into an intermediate buffer. Qutgoing
messages should be allocated from the mapped bufters to ensure that the driver always has rapid
access to message data, even when the currently running address space does not own the data.
This is necessary during the transmission of a long message that may span address space context
switches. The buffering structure is ezposed and applications are co-responsible for how buffers
are utilized. If multiple threads run in the address space from which a message is sent, it it the
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application’s responsibility to synchronize buffer accesses as necessary for integrity. Buffers can be
deallocated either immediately after being sent, or later by an explicit call.

Integrated buffer management does not cause memory protection problems because the network
interface runs inside the kernel and is trusted, and each application can only access the buffers of
the endpoints it owns. Misbehavior by an application, e.g. not freeing message buffers, only affects
that application, since the buffer areas of each endpoint are separate.

4.2. Segmentation and reassembly

Because of ATM’s extremely small cell size, segmentation and re-ssembly performance are critical
to overall network performance. To minimize the impact of SAR, we reduce the number of cell
manipulation steps by combining the ATM, SAR and CS functionality into a single pass over the
data.

The ATM, SAR, and CS headers, trailers, and pads are generated or verified on the fly as data is
transferred into or out of the FIFOs. They are never stored in memory during either send or receive.
When the beginning segment of a message is received, the CS header is read to determine the size of
the incoming message, and a contiguous buffer of the appropriate size is allocated from the receiving
endpoint’s buffer area. The receiving endpoint is determined by the ATM header’s VPI/ V(I field.
which we use to index into a table that maintains a list of free buffers for the respective endpoint.
Once the buffer has been allocated in the receiver’s address space, the network interface reads data
words from the receive FIFO and places them directly in the correct location in the buffer. When
an end of message is received, the message data is in the buffer ready for use by the application.
The result is that ATM, SAR and CS processing can be performed at a rate close to that at which
the host CPU can transfer words across the I/0O bus.

4.3. Flow control and congestion avoidance

Network flow control is required to ensure that a sending host does not overrun the resources
available at the receiver. Overrun is possible because a receiver must react to and process data as
it arrives, whereas a sender may carefully stage the transfer for maximum bandwidth. Our basic
approach tc flow control is to allow the receiver a similar degree of control over data staging so
that it can predict and reserve resources on a message by message basis.

Because of the nature of network traffic, which consists of many small messages and a few large
messages, our flow control strategy separates messages into two classes. short and long. Short
messages, which can be transported in one or two ATM cells, and which account for almost 80% of
Internet traffic, are the common case for which we optimize. We transport short messages without
any explicit flow control. Instead, we dedicate a small fraction of a receiver’s resources to short
messages. Since the bandwidth and buffering requirements of short messages are minimal, the
dedicated allotment is more than enough in most practical situations.

Long messages, greater than two segments, require explicit flow control and congestion avoidance
mechanisms. We provide flow control for long messages with a sliding window protocol [31]. Before
a long message is transmitted, it is broken into windows, which are the unit of synchronization
between sender and receiver. After sending a window, the sender must receive a corresponding




synchronization : <l before sending the next window in the message. We use a window size of one
segment for th initial window in a message, 71 segments (explained below) for all but the last
window, iuu between 1 and 71 segments for the last window. The initial window. being small. is
unlikely to overflow the receiver's FIFO. If a host receives a new initial window while it is already
-sceiving two long messages, then the receiving host queues the corresponding synchronization
message. The synchronization is sent when there is only one long message outstanding. Using this
buffer scheduling technique, the receiver substantially reduces the chances of FIFO overrun.

The choice of window size is a compromise between the conflicting requirements of bandwidth
efficiency and buffering limitations. In our windowing scheme, only one window of each message can
be in transit at any given time, and the receiver sends a synchronization cell when it processes the
initial segment in a window. Small windows are therefore less likely to cause congestion; only a large
number of concurrent messages can cause buffer overrun. On the other hand, large windows allow
better utilization of the available bandwidth because a large window allows the synchronization cell
to overlap with the transmission of the window. When the current window has been completely
sent, its synchronization has already arrived at the sender, and the sender can continue transmitting
without delay. Overlap occurs if WS > RTT x BW, where WS is the window size, RTT is the
round-trip time, and BW is the available bandwidth. The maximum reception bandwidth of the
network interface is about 50 Mbps, and the maximum transmission bandwidth is around 110
Mbps. The round-trip time, assuming that the propagation delay is 5 microseconds/km. that hosts
are separated by d km and s switches, and that every queue encountered on the path is empty. is
RTT = 10d + 20s. Switches with 16 ports can handle up to 3600 hosts such that no two hosts are
more than 5 switches away from each other. A network of switches with 64 ports each can handle
over 250,000 hosts with a maximum distance of 5 switches. Assuming hosts separated by up to 40
km and 5 switches, a window size of 71 segments enables transmission at the maximum reception
bandwidth.

The FIFO space reserved for reception of a long message will depend on the actual RTT. and
on the relative send and receive bandwidths, BW, and BW,. If BW, = BW,.in principle. no FIFO
space is required, but as mentioned, the transmit and receive bandwidths can be unequal (in our
case, BW, < BW,). We can conservatively bound the necessary FIFO space by assuming that RTT
= 0, since cells of the next window would start arriving as soon as processing on the current window
begins. Assuming RTT = 0, the maximum FIFO space is QSmaz = 2W S5 ~ BW,/BW,. Assuming
conservatively that BW, = 40 Mbps, BW; = 110 Mbps. and W5 = 71 cells, then QS = 116
cells. In allowing simultaneous reception of two long messages, the required queue size doubles to
232 cells. The remaining 60 cells in the receive FIFO are left as a slack for short messages or initial
{single-segment) windows. The slack will in practice be higher because long messages are not the
common case, FIFO usage by each long message is expected to peak at different instants. RTT is
not zero, and final windows are on average only half full.

Cell loss resulting from receiver overflow can still occur if a large number of short messages
or initial windows are sent to a host that is already receiving long messages. The receive FIFO,
though, can buffer at least 30 short messages (60 cells) or 60 initial windows. and can be drained in
less than 2.5 milliseconds. This enables more than 10000 short messages per second to be consumed
in the worst case of two long messages outstanding.




Congestion avoidance

Network congestion can occur whenever the aggregate bandwidth destined for a particular switch
output port exceeds that output port’s capacity. For example, congestion can occur in a sing'e-
switch network if two or more hosts continuously flood a single receiver, even though neither sender
exceeds the maximum bandwidth of its link to the switch. Congestion often results in cell lossage
because the switch has finite buffering capacity.

We use four simple techniques to avoid congestion: dynamic window sizing, buffer scheduling at
the receiving host, randomized time-outs with exponential back-off, and static traffic analysis with
topology optimization. As previously described, the first two techniques, dynamic window sizing
and buffer scheduling, reduce the possibility of congestion between hosts connected to the same
switch.

Buffer scheduling at the receiving hosts is performed with local information oily. Consequentiy,
we cannot detect traffic between intermediate switches. Congestion is possible in the switches if
many large messages are transmitted between hosts connected to different switches. In this case.
congestion must either be handled with intermediate resource reservation. link-by-link flow control.
or timeouts and retransmission. Because the first strategy increases connection setup time and
can waste network resources during a connection’s idle periods, and the second strategy requires
sophisticated switch and interface hardware, we rely on the third strategy.

The receiver uses timeout to reclaim its reserv~rd FIFO space in cases such as sender failure. or
continuous loss of synchronization cells, allowing other long messages to be received. The sender
uses timeout to detect a lost initial window, lost synchronization cell, or lost segments at the
end of a window (which the receiver cannot detect, since it keeps waiting for these segments).
If the sender did not timeout on these events, remaining windows in affected messages would
remain queued for transmission indefinitely. On timeout, the sender retries several times before
aborting the transmission request. The timeout used by different hosts is randomized and increases
exponentially according to the number of retries. This tends to spread retransmissions in time. and
allows forward progress in spite of congestion.

The effectiveness of timeouts is enhanced by the strict FIFO buffering in the hosts and switches.
A cell cannot linger indefinitely in a FIFO, so any cell not relayed within a certain bounded time
has been dropped. Since we bound the distance and number of switches, we can also bound the
round trip time, which makes it possible to avoid spurious timeouts. The timeout value is based on
the worst-case assumptions that the window and its acknowledgements travel through 3 switches
across 40 km, that queues are nearly full at each intermediate switch. and that end-host interrupt
latency is extremely high (30 msecs).

Lastly, if congestion remains a frequent problem despite the protocol’s best effarts. the problem
remains with the network topology or link capacities. At this point, the only solution is to analvze
the traffic and reconfigure the network so that hosts that communicate the most with each other
are connected to the same switch. Other possible rearrangements include using larger switches, or
increasing the number or transmission rate of links between congested switches. This is analogous
to the routine management of Ethernet subnetworks, routers and gateways.




4.4. Low-overhead error control and recovery

As with segmentation and reassembly, ATM’s small cell size imposes a high demand on any error
control and recovery mechanism. ATM and AAL 3/4 require that each cell be checked for errors
in the ATM header, payload CRC, segment type, and data lengths. The AAL 3/4 specification
prescribes that an entire message should be dropped in case an error is encountered in one of its
received segments.

ATM and AAL 3/4 error control plus the flow control timeouts and retransmissions described
in the previous section are nearly sufficient to provide a reliable transport protocol. A reliable
transport can be provided with small additional overhead if it can be integrated with the error
and flow control mechanisms. In the common case of messages being delivered without error,
the only additional required service is message sequencing, and end-of-message synchronization
(acknowledgment) to indicate that an entire message has been correctly received. We include these
services in our protocol implementation for the case of sequenced, reliable messages.

Any error detected by the receiver causes the receiver to discard the entire message in which the
error occurred. Consequently, a sender must retransmit every message from the beginning. The
arrival of a message that is already being received is not considered an error, but rather the result
of a timeout on the sender (for example, due to a lost acknowledgment). Previously received data
in the message is simply dropped by the receiver.

Timeouts are sufficient for error control and recovery, but recovery can be accelerated by im-
mediately returning to the sender an indication of the error during events that are unrelated to
congestion. A Negative Acknowledgement is returned when a message has been corrupted. The
sender retries the message several times but eventually gives up and returns an error to the sending
process.

An Qverflow Error indicates a high-level resource reservation problem that occurs whenever the
receiver does not have sufficient buffer space to abhsorb the incoming message. The protocol does
not attempt to recover from an overflow error, as it reflects a problem with resource reservation
at or above the session layer. Instead, the protocol returns the error indication in response to the
initial window request. The sender relays the error indication up to the sending process.

Errors resulting from network congestion where a cell has been dropped by an intermediate
switch are not acknowledged by the receiver. These include errors in the segment type. segment
sequence number, or an inconsistency in the reassembled message length. In such cases, the offend-
ing message is simply dropped. The sender detects the error through a timeout after a randomized
delay as described in Section 4.3. The sender retries several more times, each with an exponentially
increasing timeout. We do not indicate the error immediately with a negative acknowledgement
from the receiver to the sender because, in the case of cungestion, this would tend to synchronize
the transmission of different senders, preserving the congestion.

4.5. Signaling and multiplexing

The hardware we used employs the SPANS signaling protocol. This protocol allows hosts to
send requests to switches to open or close connections. The switches in turn send corresponding
indications to the destination of the connection. The destination determines whether or not the
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indication should be accepted and returns a response that is translated into a confirmation to the
source host. Signaling messages are sent over a well-known meta-connection that is maintained
by hosts and switch software. Nevertheless, sigraling can incur significant latency on the order of
tens of milliseconds per switch. This latency is not a concern when connections remain open for a
long time (e.g., for sequenced packets), but becomes prohibitive if connections are to be set up on
demand to send specific datagrams.

To provide efficient datagram support, we transport datagrams over mulitiplexed connections
(lines) between hosts. If a datagram is to be sent to a host for which no line exists, a line is dynam-
ically opened. Subsequently, any datagrams sent between the two hosts use the same connection.
so signaling costs are paid only once. The endpoints connected by the line are also dynamically
created. Since the line initiator does not know the endpoint that will be assigned to the line at the
peer host, it names instead a virtual endpoint as the destination endpoint. The signaling imple-
mentation treats this case sgp-.~ially, dynamically creating the line's endpoint at the peer host. The
initiator learns the identity of the line endpoint at the peer at the time it receives the corresponding
line open indication in the reverse direction. The protocol software reclaims lines when the number
of free endpoints on a host drops below a threshold.

The buffer for a received message is allocated directly from the buffer area of the destination
endpoint, rather than the line endpoint. Multiple messages may be received simultaneously over
different line endpoints for the same destination endpoint. Each line endpoint reassembles a message
on a different buffer, although all buffers are allocated from the same buffer area.

4.6. Integration with Internet protocols

Internet protocols may be layered on top of our network interface to allow communication over
heterogeneous or wide-area networks. IP communicates through a special, well-known endpoint
pre-allocated on each node. The IP endpoint uses the raw datagram protocol; flow and error
control must be provided by higher level software (e.g. TCP) rather than the network interface.
The TCP/IP stack can be implemented iuside or outside the kernel; in the latter case a privileged
call is offered for the IP task to register itself as the owner of the IP endpoint.

We provide two features to improve the performance of integration of Internet protocols with our
network interface: fast address lookup, and fast demultiplexing. An address lookup service maps IP
addresses or host names into physical ATM addresses. The session layer software can use this service
to bypass TCP/IP layers when the ATM address lookup succeeds. Fast packet demultiplexing is
made possible by port registration. Buffers for incoming IP messages are normally allocated from
the IP endpoint buffer area, and delivered to thieads waiting on the IP endpoint. However, the 1P
task can register specific ATM endpoints for given TCP or UDP ports. If an IP message is received
and there is a specific endpoint registered for the TCP or UDP port indicated in the header, the
buffer for the message is allocated from the buffer area of the specific endpoint. and not of the
IP endpoint. If the IP task arranges for the specific endpoint to be co-owned by the applications
having access to the given TCP or UDP port, a copy is avoided, since the buffer is allocated from
an area already mapped to the correct application address spaces. Furthermore, such messages are
delivered to any threads that are waiting on the specific endpoint. These threads may be running
on the end application address space, further reducing the demultiplexing latency [20].
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Figure 1: Process-to-process round-trip latencies using TCP/IP and using our integrated sequenced
packet protocol.

5. Performance

In this section we present the performance characteristics of our protocol implementation in terms
of throughput and latency. All measurements are between two DECstation 5000/200 workstations
connected directly by Fore Systems TCA 100 ATM interfaces.*

Our protocol suite is implemented with about £i00 lines of C code (not including signaling
support). Determining which part of our implementation corresponds to which conceptual protocol
layer is difficult because the implementation is integrated. Roughly, 3300 lines are responsible for
device management, and the ATM, SAR and CS “layers.” Our higher-level extensions to the base
ATM services constitute slightly less than 15% of the code. Fewer than 3% of the code deals with
reliable messaging. This confirms that higher-level functionality can be integrated into the network
interface level without adding undue complexity.

Process-to-process (user-level) round-trip times comparing our sequenced packet protocol and
two TCP/IP implementations, one from Ultrix and one from 4.4 BSD, are shown in Figure 1.
(The TCP measurements are taken from [33].) The round-trip time for 4-byte messages is 152
microseconds for our sequenced packet protocol, 1261 microseconds using Ultrix TCP/IP. and
1021 microseconds using BSD 4.4 TCP/IP. The sequenced packet protocol requires two messages
(sent by the user) and two acknowledgments (sent by the driver, but mostly overlapped with

*We do not include switch delay in our thronghput and latencies to facilitate comparisons to other published
numbers on the same hardware.
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user processing). In addition to latency much lower than that of TCP/IP, our interface achieves
considerably higher throughput, as indicated by the different inclinations of the curves in Figure I.
We believe our better performance can be attributed primarily to the integrated layer processing
organization of our implementation, and to our integrated buffer management. The large latency
and bandwidth difference between our protocol and both versions of TCP/IP argues strongly in
favor of bypassing higher-level protocols whenever possible. The performance disparity supports
our decision to build protocols and operating system interfaces from scratch, and confirms earlier
predictions that good protocol performance can be obtained with relatively simple hardware [4].

Figure 2 shows the throughput obtained with different message sizes for our three ATM protocol
options. Throughput for sequenced packets and datagrams converge rapidly to their maximum
sustained throughput of 48 Mbps. Both curves have their knee at about 4 KB. For messages at or
above 4 KB, the throughput overhead of flow control, error and sequence control and connection
multiplexing amounts to less than 5%. The maximum throughput that could theoretically be
achieved at the receive side, considering only the I/O bus bandwidth and loss due to headers and
trailers while neglecting possibly significant cache effects, is 62 Mbps. Our end-to-end throughput
achieves 76% of this upper bound. The throughput curve for the raw protocol stops at a relatively
small message size because it is not flow-controlled, causing receiver FIFO overrun at larger message
sizes.
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Figure 2: Process-to-process throughput using our integrated protocols.

To determine the relative overheads of flow control. error and sequence control and connec-
tion multiplexing, we measured the round-trip times and throughput when sending messages using
sequenced packets (reliable, flow-controlled), datagrams (flow-controlled), and a raw protocol im-
plementing only the ATM, SAR and CS layers over exclusive connections. Figure 3 shows the
round-trip times for messages smaller than 800 bytes. Up to 80 bytes, the round-trip time for se-
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quenced packets is only marginally higher than that for the raw protocol. This is because reliability
is integrated at the network interface level, and the only non-overlapped cost of the acknowledge-
ment is that of sending one synchronization cell. The round-trip time for datagrams is slightly
higher because of multiplexing/demultiplexing overheads. Messages larger than 80 bytes sent both
using sequenced packets and datagrams are flow-controlled, causing the step seen in the figure. This
step is due to the non-overlapped synchronization at the initial window. Other synchronizations.
however, are overlapped, and the step remains constant for higher message sizes, allowing the flow
control overhead to be amortized with larger transmission units.
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Figure 3: Comparative process-to-process round-trip latencies using our integrated protocols.

8. Related work

Similarities between our work and that of others exists along two dimensions: protocol structure
and protocol strategy. In terms of protocol structure, integrated layer processing was first proposed
by Clark and Tennenhouse as a necessary technique to achieve good protocol performance by
eliminating the number of times that data in a message is manipulated {7]. Our integrated buffer
management strategies are similar to those used in DEC SRC RPC implementation [27]. Our overall
approach of integrating ATM, SAR, CS, buffering, flow control, and error recovery demonstrates
that additional functionality (for example, error recovery) can be integrated into a single layer with
little overhead. Protocol bypass has been proposed before by the z-kernel [14] developers, with their
emphasis on the factorization of common layers in different protocol stacks. Factorization implies
a layered implementation, though, which conflicts with the goals of integrated layer processing,.

In terms of protocol strategy, our flow control and congestion avoidance scheme is similar to

14




TCP’s in that we use sliding windows, an initial window size of one segment, increase the window
size after acknowledgement of the initial window, and drop the window size back to one segment
in case of timeout and message retransmission.> There are, however, important differences. First,
our initial window size is much smaller, reducing the probability of cell loss in case other messages
are being received concurrently at the destination. Second, on successful transmission of the initial
window, we switch immediately to a window size statically determined to support transmission
at full bandwidth with low probability of buffer overrun instead of hunting for the right window
size using slow start. Third, we send synchronizations at each window rather than each segment,
reducing synchronization bandwidth overhead. Fourth, our retransmission with exponential back-
off effectively integrates the mechanism that TCP implicitly uses when managing congestion over
broadcast-based networks such as Ethernet and FDDI. Fifth, our buffer cheduling coordinates
reception of messages on different sessions so as to reduce the probability of FIFO overrun, while
TCP control is per-connection only. Finally, our flow and congestion control algorithms support
both connection-oriented and connectionless communication, while TCP is connection-oriented
only.

Our flow control scheme can be contrasted to those being investigated in DEC SRC’s Autonet-
2 [29] and CMU’s VC-Nectar [30] projects. In AN-2, each cell received is acknowledged individually
on a link-by-link, per-connection basis, using a non-standard piggy-back field in vhe ATM header
of cells flowing in the reverse direction. In contrast, VC Nectar uses explicit credit cells to indicate
the existence of reserved buffers for a specified number of cells over a connection. The sender
only attempts transmission if it has obtained the required credit from the next node on the path.
Our synchronization cells have function similar to AN-2’s acknowledgements or VC Nectar's credit
cells, but on an end-to-end basis. Link-by-link control allows more precise tracking of widely
varying traffic conditions, but at the expense of considerably more sophisticated host interfaces
and switches.

7. Conclusions

The high-bandwidth, low-latency performance of the coming generation of networks can be easily
sacrificed through redundant protocol processing. These networks, such as ATM. require specific
low-level support for services such as connection management, flow control, congestion avoidance,
and segmentation and reassembly. Slight, but well-integrated extensions to these base services are
sufficient to ensure efficient reliable delivery. Our work demonstrates that it is possible to integrate
multiple protocol layers into a relatively simple single-layered implementation that delivers both
low latency and high throughput.
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